Acting on Comparative Effectiveness Research in COPD

Jerry A. Krishnan; Richard A. Mularski

http://jama.ama-assn.org/cgi/content/full/303/23/2409

<table>
<thead>
<tr>
<th>Correction</th>
<th>Contact me if this article is corrected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citations</td>
<td>Contact me when this article is cited.</td>
</tr>
<tr>
<td>Topic collections</td>
<td>Pulmonary Diseases; Chronic Obstructive Pulmonary Disease; Statistics and Research Methods; Prognosis/Outcomes; Drug Therapy; Drug Therapy, Other</td>
</tr>
</tbody>
</table>
| Related Articles published in the same issue | Association of Corticosteroid Dose and Route of Administration With Risk of Treatment Failure in Acute Exacerbation of Chronic Obstructive Pulmonary Disease
Peter K. Lindenauer et al. *JAMA. 2010;303(23):2359.* |

Subscribe
http://jama.com/subscribe

Permissions
permissions@ama-assn.org
http://pubs.ama-assn.org/misc/permissions.dtl

Email Alerts
http://jamaarchives.com/alerts

Reprints/E-prints
reprints@ama-assn.org

Downloaded from www.jama.com by Christopher Buttery on June 16, 2010
Acting on Comparative Effectiveness Research in COPD

Jerry A. Krishnan, MD, PhD
Richard A. Mularski, MD, MSHS, MCR

Comparative effectiveness research (CER) has been defined by a report by the Federal Coordinating Council for Comparative Effectiveness as "the conduct and synthesis of research comparing the benefits and harms of different interventions and strategies to prevent, diagnose, treat, and monitor health conditions in 'real world' settings. The purpose of this research is to improve health outcomes by developing and disseminating evidence-based information to patients, clinicians, and other decision makers, responding to their expressed needs about which interventions are most effective for which patients under specific circumstances."1

Comparative effectiveness research uses observational and clinical trial methods to compare different care strategies provided by typical health care clinicians, addressing possible harms and benefits for heterogeneous patient populations in heterogeneous health care settings. In contrast, traditional efficacy research compares treatment alternatives (including no treatment or placebo) in carefully selected patient populations treated in ideal settings. Thus, efficacy research answers questions such as "can this intervention work?" whereas CER poses questions more broadly: "which interventions when translated into practice improve care and increase the likelihood of health benefits?"2

The study reported by Lindenauer and colleagues2 in this issue of JAMA comparing the benefits and harms of low-dose oral corticosteroids and high-dose intravenous corticosteroids for patients hospitalized for exacerbations of chronic obstructive pulmonary disease (COPD), as well as an earlier publication from the same group examining the use of antibiotics,3 provide 2 examples of well-designed observational CER studies. Hospitalizations for COPD exacerbations are common complications associated with high morbidity and cost. Chronic obstructive pulmonary disease afflicts about 12 million to 24 million persons in the United States alone, leads to more than 500,000 hospitalizations each year, and results in $32 billion in health care expenditures.4,5 Further mortality from COPD is increasing, with COPD predicted to become the third leading cause of death in this decade.5,8

The efficacy of systemic corticosteroids (vs placebo) for the treatment of COPD exacerbations is well established. A meta-analysis of randomized controlled trials including approximately 1000 patients with COPD exacerbations (including about 700 hospitalized for COPD exacerbations) found that systemic corticosteroids are associated with substantial benefit, including a reduction of approximately 50% in the combined endpoint of treatment failures,7 such as treatment intensification, rehospitalization, and death. However, use of systemic corticosteroids was associated with a 2-fold increase in the risk of drug-related adverse effects compared with placebo, including hyperglycemia, increased appetite, weight gain, and insomnia.

Multiple treatment guidelines recommend systemic corticosteroids for the treatment of COPD exacerbations.8–10 Although these guidelines acknowledge that data are insufficient to define the optimal dose or route of systemic corticosteroids, treatment recommendations suggest the use of oral corticosteroids at prednisone equivalent doses of 30 to 40 mg/d rather than higher intravenous doses. Oral corticosteroids are simpler to administer, are highly bioavailable, and therefore are likely to be as effective, and higher doses are more likely to result in adverse events.

In this context, the study by Lindenauer et al2 provides new evidence. The investigators conducted an observational comparative effectiveness study using a registry linking administrative and billing data sets from about 80,000 hospitalizations for COPD exacerbations in more than 400 US hospitals. Hospitalized patients initially admitted to intensive care units were excluded. Illustrating the utility of linked registries, investigators found that clinicians in these real-world settings were much more likely to administer high-dose intravenous systemic corticosteroids (average 600 mg/d of prednisone equivalent) than administer low-dose oral corticosteroids (average 60 mg/d prednisone equivalent) as initial therapy (92% and 8%, respectively). Thus, the real-world practice was largely inconsistent with current guideline recommendations to use lower doses of corticosteroids administered orally.

Based on analyses using sophisticated modeling techniques to control for possible confounding and selection bias, the in-
vestigators found no evidence to indicate that treatment fail-
ures were more common in the low-dose oral corticosteroid
group. In other words, there was no evidence to indicate that
higher doses are better. Moreover, regardless of the adjustment
technique, length of stay and total costs slightly (but statisti-
cally significantly) favored the low-dose oral corticosteroid group
(eg, in the study by Lindenhauer et al, costs were about $500
less per hospitalization).

The findings from this large observational study expand the
evidence base in support of current treatment guideline rec-

ommendations: use low-dose oral corticosteroids for patients
hospitalized for acute exacerbations of COPD. However, as
the authors acknowledge, confounding and selection bias cannot
be definitively eliminated, and their findings cannot be extended
to important subgroups, such as those directly admitted to the
intensive care unit, who were excluded from the analysis.

There are now 2 options for moving forward. One approach
would be to conduct a large-scale, pragmatic, noninferiority clini-
cal trial to determine whether low-dose oral corticosteroids are
in fact no worse than high-dose intravenous corticosteroids in
typical health care settings, such as the ones included in the study
by Lindenhauer et al. The current study aids in planning such
a pragmatic trial, including the preliminary data to estimate the
sample size (assuming a treatment failure rate similar to that
in the study by Lindenhauer et al, approximately 30 000 patients
would be necessary to exclude a 1% difference in treatment fail-
ure between groups or 120 000 patients to exclude a 0.5% dif-
ference). A trial of such size is unprecedented for COPD, would
be very expensive, and would take many years to conduct. How-
ever, such a large trial may be well worth the investment if treat-
ment failure rates are no worse with oral corticosteroids and
given the potential substantial cost savings per hospitalization
with oral corticosteroids.

Another approach would be to advocate for translating these
research findings into clinical practice now and for develop-
ing implementation and dissemination campaigns to facilitate
uptake, including the development and testing of quality met-
rics linked to reimbursement and other incentives. Caution
should be exercised when advocating a change in clinical prac-
tice based on observational research, and, given that current
practice overwhelmingly favors high-dose intravenous corti-
costeroids, facilitating change will be daunting.

Here lies an opportunity for CER within linked regist-
aries, potentially enabling ongoing surveillance of care quality
and patient outcomes. Large, representative, multisite regist-
aries, preferably enhanced in the future with clinical informa-
tion derived from increased use of interoperative elec-
tronic medical and pharmacy records, can be used to track
changes in practice, patient adherence, as well as benefits
and harms in real-world settings. With sustained funding,
CER within linked registries could further assess the harm
to benefit profiles in various subgroups, including those typi-
cally underrepresented in efficacy research (eg, those with
multiple comorbid conditions, race/ethnic minorities), docu-
ment care delivery, and provide quality measure that
can assist ongoing efforts to enhance care. These activities

serve to reassure improvements in health care delivery and
outcomes with lower oral doses of corticosteroids and
identify the need to modify or halt the implementation of
such a strategy in one or more patient subgroups.

Given the impracticality of testing every clinical interven-
tion in large-scale clinical trials, greater use of linked registries
may serve as the basis for rigorous observational CER studies,
like those by Lindenhauer et al. In the case of oral corticoste-
roids for exacerbations of COPD, the data are sufficient to take
action to change practice now. To ensure that potential ben-
efits supported by observational data are realized, further follow-
up evaluations are needed to measure time-trends in quality
metrics, health outcomes, and health care costs.

Financial Disclosures: None reported.

Funding/Support: Drs Krishnan and Mularski with Peter K. Lindenhauer, MD, MSC,
foundering steering committee members of COPD Outcomes—based Network for
Clinical Effectiveness & Research Translation (CONCERT), are funded by grants
R13 HS017894 from the Agency for Healthcare and Quality and RC2 HL101618
from the National Heart, Lung, and Blood Institute.

Role of the Sponsor: Neither agency had any role in the preparation, review, or
approval of the manuscript.

Additional Information: Dr Krishnan serves as the chair of Documents Develop-
ment and Implementation Committee and Dr Mularski as chair of the Quality Im-
provement Committee of the American Thoracic Society. CONCERT’s mission is
to use effectiveness and translational research methodologies to improve the care
and outcomes of patients with COPD.

Disclaimer: The views expressed in this editorial are those of the authors and do
not represent those of the American Thoracic Society.

REFERENCES

1. Federal Coordinating Council for Comparative Effectiveness Research Report
2. Lindenhauer PK, Pekow PS, Lahti MC, Lee Y, Benjamin EM, Rothberg MB. As-
sociation of corticosteroid dose and route of administration with risk of treatment
failure in acute exacerbation of chronic obstructive pulmonary disease. JAMA. 2010;
303(23):2359-2367.
3. Rothberg MB, Pekow PS, Lahti M, Brody O, Skiest DJ, Lindenhauer PK. Antibi-
otic therapy and treatment failure in patients hospitalized for acute exacerbations
4. National Institutes of Health/National Heart, Lung, and Blood Institute. Na-
tional Heart, Lung, and Blood Institute Factbook FY-2006 [Web page]. Bethesda,
cessed May 26, 2009.
5. Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and
7. Walters JA, Gibson PG, Wood-Baker R, Hannay M, Walters EH. Systemic cor-
ticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Coch-
.CD001288.pub3.
8. Global Initiative for Chronic Obstructive Lung Disease. Strategy for the diag-
nosis, management and prevention of COPD. http://www.goldcopd.org. Ac-
cessed May 9, 2010.
9. Chronic Obstructive Pulmonary Disease National clinical guideline on manage-
ment of chronic obstructive pulmonary disease in adults in primary and secondary
10. Celli BR, MacNee W; ATS/ERS Task Force. Standards for the diagnosis and
treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur
Respir J. 2004;23(6):932-946.
11. Helffer JE, Mularski RA, Calverley PMA. COPD performance measures: miss-
Working Group. An official American Thoracic Society policy statement: pay-for-
performance in pulmonary, critical care, and sleep medicine. Am J Respir Crit Care
Med. 2010;181(7):752-761.
13. Dougherty D, Conway PH. The “3T’s” road map to transform US health care: the

©2010 American Medical Association. All rights reserved.